Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington

Abstract
Sockeye salmon (Oncorhynchus nerka) introduced into Lake Washington in the 1930s and 1940s now spawn at several different sites and over a period of more than 3 months. To test for evolutionary divergence within this derived lineage, embryos that would have incubated in different habitats (Cedar River or Pleasure Point Beach) or at different times (October, November, or December in the Cedar River) were reared in the laboratory at 5, 9, and 12.5°C. Some developmental variation mirrored predictions of adaptive divergence: (i) survival at 12.5°C was highest for embryos most likely to experience such temperatures in the wild (Early Cedar), (ii) development rate was fastest for progeny of late spawners (Late Cedar), and (iii) yolk conversion efficiency was matched to natural incubation temperatures. These patterns likely had a genetic basis because they were observed in a common environment and could not be attributed to differences in egg size. The absolute magnitude of divergence in development rates was moderate (Late Cedar embryos emerged only 6 days earlier at 9°C) and some predictions regarding development rates were not supported. Nonetheless our results provide evidence of adaptive divergence in only 9-14 generations.

This publication has 0 references indexed in Scilit: