ADAPTATION TO TEMPERATE CLIMATES
Open Access
- 1 August 2004
- Vol. 58 (8) , 1748-1762
- https://doi.org/10.1111/j.0014-3820.2004.tb00458.x
Abstract
Only model organisms live in a world of endless summer. Fitness at temperate latitudes reflects the ability of organisms in nature to exploit the favorable season, to mitigate the effects of the unfavorable season, and to make the timely switch from one life style to the other. Herein, we define fitness as Ry, the year-long cohort replacement rate across all four seasons, of the mosquito, Wyeomyia smithii, reared in its natural microhabitat in processor-controlled environment rooms. First, we exposed cohorts of W. smithii, from southern, midlatitude, and northern populations (30-50degreesN) to southern and northern thermal years during which we factored out evolved differences in photoperiodic response. We found clear evidence of evolved differences in heat and cold tolerance among populations. Relative cold tolerance of northern populations became apparent when populations were stressed to the brink of extinction; relative heat tolerance of southern populations became apparent when the adverse effects of heat could accumulate over several generations. Second, we exposed southern, midlatitude, and northern populations to natural, midlatitude day lengths in a thermally benign midlatitude thermal year. We found that evolved differences in photoperiodic response (1) prevented the timely entry of southern populations into diapause resulting in a 74% decline in fitness, and (2) forced northern populations to endure a warm-season diapause resulting in an 88% decline in fitness. We argue that reciprocal transplants across latitudes in nature always confound the effects of the thermal and photic environment on fitness. Yet, to our knowledge, no one has previously held the thermal year constant while varying the photic year. This distinction is crucial in evaluating the potential impact of climate change. Because global warming in the Northern Hemisphere is proceeding faster at northern than at southern latitudes and because this change represents an amelioration of the thermal environment and a concomitant increase in the duration of the growing season, we conclude that there should be more rapid evolution of photoperiodic response than of thermal tolerance as a consequence of global warming among northern, temperate ectotherms.Keywords
This publication has 72 references indexed in Scilit:
- Asymmetric Evolution of Photoperiodic Diapause in Temperate and Tropical Invasive Populations of Aedes albopictus (Diptera: Culicidae)Annals of the Entomological Society of America, 2003
- Postponed reproduction as an adaptation to winter conditions inDrosophila melanogaster: evidence for clinal variation under semi-natural conditionsProceedings Of The Royal Society B-Biological Sciences, 2001
- Recent Trends in Maximum and Minimum Temperature Threshold Exceedences in the Northeastern United StatesJournal of Climate, 1996
- Cold Hardiness and Overwintering Strategies of Hatchlings in an Assemblage of Northern TurtlesEcology, 1995
- Direct and Correlated Responses to Selection on Age at Reproduction in Drosophila melanogasterEvolution, 1992
- Analyzing Tables of Statistical TestsEvolution, 1989
- Multiple Genetic Mechanisms for the Evolution of Senescence in Drosophila melanogasterEvolution, 1988
- Responses to Selection among Life-History Traits in a Nonmigratory Population of Milkweed Bugs (Oncopeltus fasciatus)Evolution, 1988
- Overwintering ecology of the aquatic fauna associated with the pitcher plant Sarracenia purpurea L.Canadian Journal of Zoology, 1971
- Development of Aedes (Diptera: Culicidae) at Fort Churchill, Manitoba, and Prediction of Dates of EmergenceEcology, 1956