Stabilization of feedback-induced instabilities in semiconductor lasers

Abstract
We present extensive studies on feedback-induced instabilities in semiconductor lasers (SLs) subject to delayed optical feedback. We demonstrate that a sufficient reduction of the linewidth enhancement factor α changes the dynamical structure of the system such that permanent emission in a stable emission state is achieved. This behaviour can be well understood on the basis of the Lang-Kobayashi rate equation model. We give first experimental evidence for its major theoretical predictions concerning the stable emission state and investigate the robustness of this stable state against external perturbations. We demonstrate that noise-induced escape from the basin of attraction of the stable state shows similarities to the classical problem of thermally induced escape from a potential well. Thus, we have developed and realized experimentally an efficient concept to avoid and stabilize feedback-induced instabilities in SLs.