Energy stability theory for free-surface problems: buoyancy-thermocapillary layers

Abstract
Energy stability theory has been formulated for two-dimensional buoyancy–thermocapillary convection in a layer with a free surface. The theory yields a critical Rayleigh number RE for which R < RE is a sufficient condition for stability of the layer. RE emerges from the variational formulation as an eigenvalue of a nonlinear system of Euler–Lagrange equations. For the case of small capillary number (large mean surface tension) explicit values are obtained for RE. The analogous linear-theory results for this case are obtained in terms of a critical Rayleigh number RL. These are compared. It is found that the existence of the deformable interface can lead to a stabilization relative to the case of a planar interface. This result is explained in physical terms. The energy theory is then generalized to include general flow problems having three-dimensional disturbances, non-Newtonian bulk fluids and general interfacial mechanics such as surface viscosity and elasticity.