Simplified LCAO Method for the Periodic Potential Problem
- 15 June 1954
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 94 (6) , 1498-1524
- https://doi.org/10.1103/physrev.94.1498
Abstract
The LCAO, or Bloch, or tight binding, approximation for solids is discussed as an interpolation method, to be used in connection with more accurate calculations made by the cellular or orthogonalized plane-wave methods. It is proposed that the various integrals be obtained as disposable constants, so that the tight binding method will agree with accurate calculations at symmetry points in the Brillouin zone for which these calculations have been made, and that the LCAO method then be used for making calculations throughout the Brillouin zone. A general discussion of the method is given, including tables of matrix components of energy for simple cubic, face-centered and body-centered cubic, and diamond structures. Applications are given to the results of Fletcher and Wohlfarth on Ni, and Howarth on Cu, as illustrations of the fcc case. In discussing the bcc case, the splitting of the energy bands in chromium by an antiferromagnetic alternating potential is worked out, as well as a distribution of energy states for the case of no antiferromagnetism. For diamond, comparisons are made with the calculations of Herman, using the orthogonalized plane-wave method. The case of such crystals as InSb is discussed, and it is shown that their properties fit in with the energy band picture.Keywords
This publication has 29 references indexed in Scilit:
- Notizen: Quantenmechanik der kubisch raumzentrierten Strukturen der ÜbergangsmetalleZeitschrift für Naturforschung A, 1952
- Density of States Curve for the 3d Electrons in NickelProceedings of the Physical Society. Section A, 1952
- Calculation of the density of states curve for the 3d electrons in nickelJournal of Computers in Education, 1951
- The Nature of the Interatomic Forces in MetalsPhysical Review B, 1938
- The electronic specific heat and X-ray absorption of metals, and some other properties related to electron bandsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1937
- Theory of Brillouin Zones and Symmetry Properties of Wave Functions in CrystalsPhysical Review B, 1936
- A Theory of the Form of the X-Ray Emission Bands of MetalsPhysical Review B, 1934
- The theory of electronic semi-conductorsProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1931
- ber die Quantenmechanik der Elektronen in KristallgitternThe European Physical Journal A, 1929
- Termaufspaltung in KristallenAnnalen der Physik, 1929