Abstract
Mutations caused by the insertion of members of the Ac or Spm family of transposable elements result in a great diversity of phenotypes. With the cloning of the mutant genes and the characterization of their products, the mechanisms underlying phenotypic diversity are being deciphered. These mechanisms include (i) imprecise excision of transposable elements, which can result in the addition of amino acids to proteins; (ii) DNA methylation, which has been correlated with the activity of the element; (iii) transposase-mediated deletions within elements, which can inactivate an element or lead to a new unstable phenotype; and (iv) removal of transcribed elements from RNA, which can facilitate gene expression despite the insertion of elements into exons. An understanding of the behavior of the maize elements has provided clues to the function of cryptic elements in all maize genomes.