Abstract
Change in nuclear volume and chromatin conformation are generally considered to reflect altered gene expression in eukaryotic cells. The present studies were undertaken to investigate whether these nuclear parameters of luteal cells can be altered by hormone treatment in vitro or change during the estrous cycle. The nuclear volume of small luteal cells was significantly lower than that of large luteal cells during the cycle and pregnancy. The nuclear volumes of small and large luteal cells from pregnancy did not change during incubation without any hormone or with 10 nM prostaglandin (PG)F. However, incubation with 1 nM human chorionic gonadotropin (hCG) or 10 nM PGE1 resulted in a significant increase of nuclear volume of small luteal cells by 4 h and that of large luteal cells by 6 h. Small cells were more responsive to hCG than large luteal cells. The nuclear volumes of small and large luteal cells also significantly increased from early to mid luteal phase with no further change in late luteal phase. hCG and PGE1, as well as PGF, treatment resulted in a change of chromatin conformation of small and large luteal cells. Dibutyryl cyclic AMP (10 mM) mimicked the hormones by increasing nuclear volumes and changing the chromatin conformation of small and large luteal cells. Chromatin conformation of small and large luteal cells also changed from early to mid luteal phase and mid to late luteal phase. In conclusion, in vitro, hCG and PGs can regulate nuclear volume and/or chromatin conformation of small as well as large bovine luteal cells. In vivo, these nuclear changes occur during the periods of luteal growth, development and regression in the estrous cycle.

This publication has 31 references indexed in Scilit: