The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine.
Open Access
- 1 November 1990
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 87 (21) , 8612-8616
- https://doi.org/10.1073/pnas.87.21.8612
Abstract
We have investigated the mechanism by which cultured endothelial cells generate L-arginine (L-Arg), the substrate for the biosynthesis of endothelium-derived relaxing factor. When Arg-depleted endothelial cells were incubated in Krebs' solution for 60 min, L-Arg levels were significantly (9.7-fold) elevated. The generation of L-Arg coincided with a substantial decrease (90%) in intracellular L-glutamine (L-Gln), whereas all other amino acids were virtually unaffected. Changes in calcium, pH, or oxygen tension had no effect on L-Arg generation, which was, however, prevented when the cells were incubated in culture medium containing L-Gln. L-Arg generated by endothelial cells labeled with L-[14C]Arg was derived from an unlabeled intracellular source, for the specific activity of the intracellular L-Arg pool decreased substantially (8.8-fold) over 60 min. Arg-depleted endothelial cells did not form urea or metabolize L-ornithine but converted L-citrulline (L-Cit) to L-Arg possibly via formation of L-argininosuccinic acid. Nondepleted cells stimulated with the calcium ionophore A23187 showed only a transient accumulation of L-Cit, indicating that L-Cit is recycled to L-Arg during the biosynthesis of endothelium-derived relaxing factor. The generation of L-Arg by Arg-depleted endothelial cells was partially (45%) blocked by protease inhibitors, and various Arg-containing dipeptides were rapidly cleaved to yield L-Arg. Thus, cultured endothelial cells recycle L-Cit to L-Arg and possibly liberate peptidyl L-Arg. The Arg-Cit cycle appears to be the equivalent in the endothelial cell to the formation of urea by the liver. The biosynthesis of endothelium-derived relaxing factor may, therefore, not only produce a powerful vasodilator but also relieve the endothelial cell of excess nitrogen.This publication has 28 references indexed in Scilit:
- Regional distribution of EDRF/NO-synthesizing enzyme(s) in rat brainBiochemical and Biophysical Research Communications, 1990
- Endothelial cells metabolize NG -monomethyl-L-arginine to L-citrulline and subsequently to L-arginineBiochemical and Biophysical Research Communications, 1990
- Depletion of arterial L-arginine causes reversible tolerance to endothelium-dependent relaxationBiochemical and Biophysical Research Communications, 1989
- L-Arginine causes whereas L-argininosuccinic acid inhibits endothelium-dependent vascular smooth muscle relaxationBiochemical and Biophysical Research Communications, 1989
- Vascular activity of polycations and basic amino acids: L-arginine does not specifically elicit endothelium-dependent relaxationBiochemical and Biophysical Research Communications, 1989
- Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediateBiochemistry, 1988
- Vascular endothelial cells synthesize nitric oxide from L-arginineNature, 1988
- Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cellsFEBS Letters, 1987
- Activated macrophages kill tumour cells by releasing arginaseNature, 1978
- Enzymes of Arginine and Urea SysthesisPublished by Wiley ,1973