ADP‐ribosylation of skeletal muscle and non‐muscle actin by Clostridium perfringens iota toxin

Abstract
The enzymatically active component ia of Clostridium perfringens iota toxin ADP-ribosylated actin in human platelet cytosol and purified platelet β/γ-actin, in a similar way to that been reported for component I of botulinum C2 toxin. ADP-ribosylation of cytosolic and purified actin by either toxin was inhibited by 0.1 mM phalloidin indicating that monomeric G-actin but not polymerized F-actin was the toxin substrate. Perfringens iota toxin and botulinum C2 toxin were not additive in ADP-ribosylation of platelet actin. Treatment of intact chicken embryo cells with botulinum C2 toxin decreased subsequent ADP-ribosylation of actin in cell lysates by perfringens iota or botulinum C2 toxin. In contrast to botulinum C2 toxin, perfringens iota toxin ADP-ribosylated skeletal muscle α-actin with a potency and efficiency similar to non-muscle actin. ADP-ribosylation of purified skeletal muscle and non-muscle actin by perfringens iota toxin led to a dose-dependent impairment of the ability of actin to polymerize.