20-HETE and Circulating Insulin in Essential Hypertension With Obesity

Abstract
Analogous to observations in Dahl salt-sensitive (SS) rats, we have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is involved in the pathogenesis of SS essential hypertension. A strong negative correlation between urine 20-HETE and body mass index (BMI) remains unexplained. We measured BP, urine sodium (UNaV), and 20-HETE in obese hypertensive subjects during a 24-hour salt load (160 mmol NaCl diet+2 L intravenous saline). We classified them into insulin-resistant (IR) (n=14) and insulin-sensitive (IS) (n=12), with the average insulin sensitivity index (SI=22.5×[fasting glucose×insulin] −1 ) of 3 days (cutoff for IR, SI P 2 , P P P r =−0.39, P r =−0.53, P −1 /μU · mL −1 , P r =−0.40, P <0.04), whereas the relationship between 20-HETE and SI was not statistically significant. Our data suggest that increased circulating insulin, not the state of insulin resistance, suppresses urine 20-HETE excretion in obese hypertensive subjects. Findings in experimental models suggest that an inhibitory effect of insulin on cytochrome P4504A, rather than effects of insulin on membrane-bound arachidonic acid or on its release to the cytosol, may explain our observation.