Anisotropic Scattering Approximations in the Monoenergetic Boltzmann Equation
- 1 April 1965
- journal article
- research article
- Published by Taylor & Francis in Nuclear Science and Engineering
- Vol. 21 (4) , 498-508
- https://doi.org/10.13182/nse65-a18794
Abstract
The effects of anisotropic scattering approximations in the monoenergetic transport equation are evaluated by calculating discrete eigenvalues, fluxes due to a plane source, and slab critical half-thicknesses, all for homogeneous media. Relative to P2 scattering approximation results, which are deemed accurate because of their agreement with P4 solutions, the simple transport approximation overestimates eigenvalues and underestimates half-thicknesses in multiplying media while a P1 scattering approximation underestimates eigenvalues and overestimates thicknesses, but with smaller error. In the plane source problem, where the detailed flux behavior is observed, the transport approximation is even less accurate; but an extended transport approximation is found to be much more adequate. In overall effectiveness, in order of increasing accuracy, the approximations considered are ranked as follows: 1) transport, 2) forward-backward, 3) first-order Legendre, 4) extended transport, and 5) higher order Legendre. Some evidence is given to indicate that, even for severely anisotropic scattering, relatively low-order Legendre approximations are sufficient to include anisotropic scattering effects.Keywords
This publication has 0 references indexed in Scilit: