Ensemble quantum computing by NMR spectroscopy
Open Access
- 4 March 1997
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 94 (5) , 1634-1639
- https://doi.org/10.1073/pnas.94.5.1634
Abstract
A quantum computer (QC) can operate in parallel on all its possible inputs at once, but the amount of information that can be extracted from the result is limited by the phenomenon of wave function collapse. We present a new computational model, which differs from a QC only in that the result of a measurement is the expectation value of the observable, rather than a random eigenvalue thereof. Such an expectation value QC can solve nondeterministic polynomial-time complete problems in polynomial time. This observation is significant precisely because the computational model can be realized, to a certain extent, by NMR spectroscopy on macroscopic ensembles of quantum spins, namely molecules in a test tube. This is made possible by identifying a manifold of statistical spin states, called pseudo-pure states, the mathematical description of which is isomorphic to that of an isolated spin system. The result is a novel NMR computer that can be programmed much like a QC, but in other respects more closely resembles a DNA computer. Most notably, when applied to intractable combinatorial problems, an NMR computer can use an amount of sample, rather than time, which grows exponentially with the size of the problem. Although NMR computers will be limited by current technology to exhaustive searches over only 15 to 20 bits, searches over as much as 50 bits are in principle possible, and more advanced algorithms could greatly extend the range of applicability of such machines.Keywords
This publication has 14 references indexed in Scilit:
- Bulk Spin-Resonance Quantum ComputationScience, 1997
- Universal Quantum SimulatorsScience, 1996
- Quantum computation and Shor's factoring algorithmReviews of Modern Physics, 1996
- Quantum ComputationScience, 1995
- Quantum Computations with Cold Trapped IonsPhysical Review Letters, 1995
- A quantum jump in computer sciencePublished by Springer Nature ,1995
- Molecular Computation of Solutions to Combinatorial ProblemsScience, 1994
- Envisioning a Quantum SupercomputerScience, 1994
- A Potentially Realizable Quantum ComputerScience, 1993
- Quantum computational networksProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1989