Cytoplasmic dynein binds to phospholipid vesicles

Abstract
Cytoplasmic dynein is the putative motor protein for retrograde organelle transport along microtubules in cells and, thus, must be capable of binding to organelle membranes. Such an attachment may occur via receptor proteins or through a direct interaction of dynein with the membrane phospholipids. We show here that cytoplasmic dynein-synaptic membrane binding does not require a receptor protein and that this binding is mediated by an electrostatic interaction with acidic phospholipids. The properties of cytoplasmic dynein binding to NaOH-extracted synaptic membranes are not significantly affected when those membranes are treated with trypsin to digest endogenous integral membrane proteins. Moreover, purified cytoplasmic dynein is capable of binding to liposomes composed of pure phospholipids. Dynein binds to liposomes with a profile remarkably similar to that of dynein binding to native membranes. Dynein-liposome binding is dependent upon the presence of acidic phospholipids and is disrupted by NaCl. Thus, these studies suggest that electrostatic interactions can effect dynein-membrane binding.