An L-arginine-dependent mechanism mediates kupffer cell inhibition of hepatocyte protein synthesis in vitro

Abstract
The hepatic failure associated with severe sepsis is characterized by specific, progressive, and often irreversible defects in hepatocellular metabolism (1). Although the etiologic microbe can often be identified, the direct causes and mechanisms of the hepatocellular dysfunction are poorly understood. We have hypothesized that Kupffer cells (KC), which interact with ambient septic stimuli, respond by providing signals to adjacent hepatocytes (HC) in sepsis . Furthermore, we have provided evidence (2, 3) that KC activated by LPS from Gram-negative bacteria can induce profound changes in the function of neighboring HC in coculture. In our model, coculture of either KC (2) or peritoneal macrophages (Mφ)(3) with HC normally promotes HC protein synthesis ([(3)H]leucine incorporation). The addition of LPS or killed Escherichia colt' to such cocultures induces a profound decrease in HC protein synthesis, as well as qualitative changes ([(35)S]methionine, SDS-gel electrophoresis) in protein synthesis without inducing HC death (2, 3) . In this report we show that the inhibition in protein synthesis is mediated via an L-arginine-dependent mechanism.