Relationship between mRNA levels and protein accumulation in a chloroplast promoter-mutant of Chlamydomonas reinhardtii

Abstract
The photosynthetic chloroplast mutant G64 of Chlamydomonas reinhardtii was shown to contain a single point mutation within the 5′ region of the psbD gene encoding the D2 protein of the photosystem II reaction center. The mutation affects the sequence element TATAATAT which has previously been hypothesized to function as the psbD promoter. Run-on analysis confirmed that transcription of psbD in the mutant was reduced to approximately 10% of the wild-type level. However, psbD mRNA accumulated to approximately 35%, despite the prominent decrease in RNA synthesis. This suggests that RNA-stabilization effects can compensate to some extent for a reduction in transcriptional activity. Interestingly, a direct correlation between transcript levels and the accumulation of the psbD gene product, the D2-protein, was observed in G64. The data suggest that posttranscriptionally acting regulatory factors determine the rate-limiting steps of chloroplast psbD gene expression.