Light and electron microscopic study of adenosine triphosphatase activity of anuran tadpole musculature

Abstract
The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. ‘Red’ and ‘white’ muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and ‘Z’ bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail ‘red’ muscle fibres are possible ‘slow,’ and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, ‘red’ muscle fibres of the anuran tail musculature are not equivalent to ‘Type I’ fibres of higher chordates.