Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies

Abstract
Several models for mortality prediction have been constructed for critically ill patients with haematological malignancies in recent years. These models have proven to be equally or more accurate in predicting hospital mortality in patients with haematological malignancies than ICU severity of illness scores such as the APACHE II or SAPS II 1. The objective of this study is to compare the accuracy of predicting hospital mortality in patients with haematological malignancies admitted to the ICU between models based on multiple logistic regression (MLR) and support vector machine (SVM) based models.