Abstract
Sintering of powders occurs in a wide array of manufacturing technologies and geophysical phenomena. Despite the prevalence of powder sintering, little attention has been paid to sintering of macroscopic shapes under non-isothermal conditions. In this paper (1) features of a representative, experimentally grown solid shape produced by non-isothermal sintering are discussed, (2) prediction of the solid shape evolution is achieved using a hybrid heat transfer, sintering, and consolidation model, (3) comparison of the actual and predicted solid shapes is made, (4) parametric simulation of solid part growth in conjunction with void expansion is attained, and (5) analytical predictions of the void space evolution are developed and discussed.