FGF-1 and FGF-2 regulate the expression of E-cadherin and catenins in pancreatic adenocarcinoma

Abstract
E-cadherin is a transmembrane protein that mediates Ca2+-dependent cell-cell adhesion and is implicated in a number of biologic processes, including cell growth and differentiation, cell recognition and cell sorting during development. We have previously demonstrated that both cell-cell adhesion and invasion are modulated by fibroblast growth factor (FGF)-1 and FGF-2 in a panel of pancreatic adenocarcinoma cell lines (BxPc3, T3M4 and HPAF). Here, we examine further the role of FGFs in the expression and activation of the E-cadherin/catenin system. We demonstrate that both FGF-1 and FGF-2 upregulate E-cadherin and β-catenin at the protein level in the BxPc3 and HPAF cell lines and modestly in T3M4 cells. FGF-1 and FGF-2 facilitate the association of E-cadherin and α-catenin with the cytoskeleton, as demonstrated by the increase in the detergent-insoluble fraction of E-cadherin in BxPc3 and HPAF cells. Since the correct function of the E-cadherin/catenin complex requires its association with the cytoskeleton, our data suggest that FGF-1 and FGF-2 contribute to the integrity and thus the function of the complex. Furthermore, FGFs facilitate the assembly of the E-cadherin/catenin axis. The effect is associated with elevation of tyrosine phosphorylation of E-cadherin, α-catenin, β-4051μcatenin and γ-catenin, but not p120ctn. These findings indicate that the E-cadherin/catenin system is a target of the FGF/FGFR system and that coordinated signals from both systems may determine the ultimate biologic responses.