Ions of kiloelectron volt energies incident on a solid surface produce a number of effects: several atoms are sputtered off, several electrons are emitted, chemical reactions may be induced, atoms are displaced from their equilibrium positions, and ions implant themselves in the solid, altering its properties. Some of these effects, such as sputtering and implantation are widely used in semiconductor device fabrication and in other fields. Thus the capability to focus a beam of ions to submicrometer dimensions, i.e., dimensions compatible with the most demanding fabrication procedures, is an important development. The focused ion beam field has been spurred by the invention of the liquid metal ion source and by the utilization of focusing columns with mass separation capability. This has led to the use of alloy ion sources making available a large menu of ion species, in particular the dopants of Si and GaAs. The ability to sputter and to also induce deposition by causing breakdown of an adsorbed film has produced an immediate application of focused ion beams to photomask repair. The total number of focused ion beam fabrication systems in use worldwide is about 35, about 25 of them in Japan. In addition, there are many more simpler focused ion beam columns for specialized uses. The interest is growing rapidly. The following range of specifications of these systems has been reported: accelerating potential 3 to 200 kV, ion current density in focal spot up to 10 A/cm2, beam diameters from 0.05 to 1 μm, deflection accuracy of the beam over the surface ±0.1 μm, and ion species available Ga, Au, Si, Be, B, As, P, etc. Some of the applications which have been demonstrated or suggested include: mask repair, lithography (to replace electron beam lithography), direct, patterned, implantation doping of semiconductors, ion induced deposition for circuit repair or rewiring, scanning ion microscopy, and scanning ion mass spectroscopy.