Abstract
SUMMARY Field scale variability in the grain yield of barley in 1989 was investigated in 62 field plots in a Dutch polder area, and compared to soil- and simulation-type characteristics. Total grain mass varied between 3409 and 6019 kg/ha, and grain moisture content between 131 and 14·7%. Soil profile descriptions and soil characteristics were used as basic input data for simulations. Soil water flow was simulated at 119 locations with the LEACHM model, for the purpose of quantifying spatial variability in transpiration deficits in the growing season. Both soil- and simulation-type characteristics were translated from point values to spatial averages for the harvested fields, using kriging. Kriged characteristics were correlated with yields, and used to construct transfer functions. Simulated transpiration deficits during sensitive crop development phases showed negative correlations with grain yield. Transfer functions explained at maximum 68·2% of the variance in the yields.

This publication has 1 reference indexed in Scilit: