A Nonviral Peptide Can Replace the Entire N Terminus of Zucchini Yellow Mosaic Potyvirus Coat Protein and Permits Viral Systemic Infection

Abstract
Systematic deletion and peptide tagging of the amino-terminal domain (NT, ∼43 amino acids) of an attenuated zucchini yellow mosaic potyvirus (ZYMV-AGII) coat protein (CP) were used to elucidate its role in viral systemic infection. Deletion mutants truncated by 8, 13, and 33 amino acid residues from the CP-NT 5′ end were systemically infectious and produced symptoms similar to those of the AGII virus. Tagging these deletion mutants with either human c-Myc (Myc) or hexahistidine peptides maintained viral infectivity. Similarly, addition of these peptides to the intact AGII CP-NT did not affect viral life cycle. To determine which parts, if any, of the CP-NT are essential for viral systemic infection, a series of Myc-tagged mutants with 8 to 43 amino acids removed from the CP-NT were constructed. All Myc-tagged CP-NT deletion mutants, including those from which virtually all the viral CP-NT had been eliminated, were able to encapsidate and cause systemic infection. Furthermore, chimeric viruses with deletions of up to 33 amino acids from CP-NT produced symptoms indistinguishable from those caused by the parental AGII virus. In contrast to CP-NT Myc fusion, addition of the foot-and-mouth disease virus (FMDV) immunogenic epitope to AGII CP-NT did not permit systemic infection. However, fusion of the Myc peptide to the N terminus of the FMDV peptide restored the capability of the virus to spread systemically. We have demonstrated that all CP-NT fused peptides were exposed on the virion surface, masking natural CP immunogenic determinants. Our findings demonstrate that CP-NT is not essential for ZYMV spread and that it can be replaced by an appropriate foreign peptide while maintaining systemic infectivity.