1,25-Dihydroxyvitamin D3and Human Bone-Derived Cells in Vitro: Effects on Alkaline Phosphatase, Type I Collagen and Proliferation*

Abstract
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3], but not 24,25-(OH)2D3 stimulates the alkaline phosphatase activity of cultured human bone cell populations. The stimulatory effect of the sterol was dose dependent (10-10-10-7 M), evident by 24 h, and observed over a range of cell densities. Analysis of the radiolabeled collagens synthesised by human bone cell cultures indicated the synthesis of predominantly type I collagen. In the presence of 1,25-(OH)2D3, but not 24,25-(OH)2D3, there was a dose-dependent (10-11-10-9 M) increase in radiolabeled proline incorporation into collagenase-digestible protein and in the amount of collagen synthesized, expressed as a percentage of the total protein synthesis. The effect of 1,25-(OH)2D3 was observed over a range of cell densities and appeared to be specific for the synthesis of type I collagen. The stimulatory effect of 1,25-(OH)2D3 on alkaline phosphatase activity and the increase in proline incorporation into collagenase-digestible protein were accompanied by a dose-dependent (5 .times. 10-11 to 5 .times. 10-8 M) inhibition of bone cell proliferation. These findings suggest that 1,25-(OH)2D3 is an important modulator of the growth and differentiation of human bone cells in vitro. They are also consistent with the possibility that 1,25-(OH)2D3 has direct effects on bone formation in vivo.