Wreath Powers and Characteristically Simple Groups
- 1 April 1962
- journal article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 58 (2) , 170-184
- https://doi.org/10.1017/s0305004100036379
Abstract
A group G is called characteristically simple if it has no characteristic subgroups other than itself and the unit subgroup. For brevity, we call such groups -groups; we also use to denote the class of all characteristically simple groups.This publication has 12 references indexed in Scilit:
- The Frattini Subgroups of Finitely Generated GroupsProceedings of the London Mathematical Society, 1961
- Some Constructions for Locally Finite GroupsJournal of the London Mathematical Society, 1959
- Finiteness Conditions in Locally Soluble GroupsJournal of the London Mathematical Society, 1959
- Groups of order automorphisms of ordered setsMathematika, 1957
- NilgruppenMathematische Zeitschrift, 1955
- A characteristically simple groupMathematical Proceedings of the Cambridge Philosophical Society, 1954
- Sur les groupes nilpotents et les anneaux de LieAnnales Scientifiques de lʼÉcole Normale Supérieure, 1954
- La structure des $p$-groupes de Sylow des groupes symétriques finisAnnales Scientifiques de lʼÉcole Normale Supérieure, 1948
- Theory of monomial groupsTransactions of the American Mathematical Society, 1942
- Theory of Monomial GroupsTransactions of the American Mathematical Society, 1942