A B‐type PDGF receptor lacking most of the intracellular domain escapes degradation after ligand binding

Abstract
The characteristics of the human B-type platelet-derived-growth-factor (PDGF) receptor expressed in Chinese hamster ovary (CHO) cells, were compared with those of a mutant receptor lacking all but 19 amino acids of the intracellular domain. The transfected wild-type receptor was synthesized as a 160-kDa precursor that was processed to 190 kDa. Each CHO cell expressed 30000-100000 receptors which bound PDGF-BB with a Kd of about 0.5 nM. Analysis of PDGF-AB binding yielded non-linear Scathard plots; the major part of the binding sites had a Kd of 6 nM. PDGF-AA was not bound. The receptors expressed in CHO cells were down-regulated after binding of PDGF-BB, and mediated degradation of 125I-PDGF-BB with similar as PDGF-B-type receptors in human fibroblasts. The transfected receptor also transduced a mitogenic signal. The mutant receptor was synthesized as a 90-kDa precursor and was processed to 120 kDa with a slightly faster rate than the wild-type receptor. Cells expressing the mutant receptor generally had around 106 ligand-binding sites/cell, with a Kd for binding of PDGF-BB of 3 nM. The mutant receptor, which did not transduce a mitogenic response, mediated degradation of 125I-PDGF-BB, albeit less efficiently compared to the wild-type receptor. In contrast to the wild-type receptor, it was down-regulated only to a limited extent and not degraded in response to ligand binding. These findings indicate a role for intracellular part of the receptor, not only in mitogenic signaling, but also in receptor internalization and intracellular routing.