Frequency entrainment for micromechanical oscillator

Abstract
We demonstrate synchronization of laser-induced self-sustained vibrations of radio-frequency micromechanical resonators by applying a small pilot signal either as an inertial drive at the natural frequency of the resonator or by modulating the stiffness of the oscillator at double the natural frequency. By sweeping the pilot signal frequency, we demonstrate that the entrainment zone is hysteretic and can be as wide as 4% of the natural frequency of the resonator, 400 times the 1/Q∼10−4 half-width of the resonant peak. Possible applications are discussed based on the wide range of frequency tuning and the power gain provided by the large amplitude of self-oscillations (controlled by a small pilot signal).