Estimating the Effect of Stochastic Wind Stress Forcing on ENSO Irregularity
- 1 July 1997
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 10 (7) , 1473-1486
- https://doi.org/10.1175/1520-0442(1997)010<1473:eteosw>2.0.co;2
Abstract
One open question in El Niño–Southern Oscillation (ENSO) simulation and predictability is the role of random forcing by atmospheric variability with short correlation times, on coupled variability with interannual timescales. The discussion of this question requires a quantitative assessment of the stochastic component of the wind stress forcing. Self-consistent estimates of this noise (the stochastic forcing) can be made quite naturally in an empirical atmospheric model that uses a statistical estimate of the relationship between sea surface temperature (SST) and wind stress anomaly patterns as the deterministic feedback between the ocean and the atmosphere. The authors use such an empirical model as the atmospheric component of a hybrid coupled model, coupled to the GFDL ocean general circulation model. The authors define as residual the fraction of the Florida State University wind stress not explained by the empirical atmosphere run from observed SST, and a noise product is constructed by ran... Abstract One open question in El Niño–Southern Oscillation (ENSO) simulation and predictability is the role of random forcing by atmospheric variability with short correlation times, on coupled variability with interannual timescales. The discussion of this question requires a quantitative assessment of the stochastic component of the wind stress forcing. Self-consistent estimates of this noise (the stochastic forcing) can be made quite naturally in an empirical atmospheric model that uses a statistical estimate of the relationship between sea surface temperature (SST) and wind stress anomaly patterns as the deterministic feedback between the ocean and the atmosphere. The authors use such an empirical model as the atmospheric component of a hybrid coupled model, coupled to the GFDL ocean general circulation model. The authors define as residual the fraction of the Florida State University wind stress not explained by the empirical atmosphere run from observed SST, and a noise product is constructed by ran...Keywords
This publication has 0 references indexed in Scilit: