The two-dimensional Ising model in the magnetic field: a numerical check of Zamolodchikov's conjecture
- 7 June 1989
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 22 (11) , L513-L518
- https://doi.org/10.1088/0305-4470/22/11/011
Abstract
The authors calculate numerically the transfer matrix spectrum of the 2D Ising model at T=Tc and in a magnetic field h not=0. In the limit h to 0, their results reproduce the mass spectrum conjectured by Zamolodchikov (1988). Scaling functions are also studied.Keywords
This publication has 14 references indexed in Scilit:
- Universal distance ratios for two-dimensional polymersJournal of Physics A: General Physics, 1989
- Off the critical point by perturbation: The Ising model spin-spin correlatorNuclear Physics B, 1989
- Universal amplitude in the sizes of rings in two dimensionsJournal of Physics A: General Physics, 1988
- Central Charge and Universal Combinations of Amplitudes in Two-Dimensional Theories Away from CriticalityPhysical Review Letters, 1988
- Finite-lattice extrapolation algorithmsJournal of Physics A: General Physics, 1988
- Finite-size scaling functions and conformal invarianceJournal of Physics A: General Physics, 1987
- Finite-size scaling and universality in the spectrum of the quantum ising chain. I. Periodic and antiperiodic boundary conditionJournal of Physics A: General Physics, 1987
- Unitary representations of the Virasoro and super-Virasoro algebrasCommunications in Mathematical Physics, 1986
- An introduction to lattice gauge theory and spin systemsReviews of Modern Physics, 1979
- Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-TypusNumerische Mathematik, 1964