Abstract
Kerr's metric is often said to describe the geometry exterior to a body whose mass and rotation are measured by Kerr's parameters m and a, respectively, even though no interior solution is known. In this paper we give an interior solution valid in the limit when the rotation parameter a is sufficiently small so that terms of higher power than the first are negligible, but the mass parameter m is allowed to be large. This is accomplished by bringing Kerr's exterior metric into the form of the metric for a slowly rotating mass shell. Also, the connection is found between Kerr's parameters and the physical parameters characterizing the rotating body.

This publication has 4 references indexed in Scilit: