L2-lower bounds to solutions of one-body Schrödinger equations

Abstract
The asymptotic behaviour of L2-solutions of one-body Schrödinger equations (–δ+V–E)ψ = 0 in ΩR = {x ∊ Rn||x|>R} is investigated. We show, for example, that if V tends to zero in a certain sense for |x|→∞, then either |x|γ exp for some γ>0 or ψ has compact support. Related results are given for potentials tending to infinity for |x|→∞.