Interaction of the τ2 Transcriptional Activation Domain of Glucocorticoid Receptor with a Novel Steroid Receptor Coactivator, Hic-5, Which Localizes to Both Focal Adhesions and the Nuclear Matrix

Abstract
Hic-5 (hydrogen peroxide–inducible clone-5) is a focal adhesion protein that is involved in cellular senescence. In the present study, a yeast two-hybrid screen identified Hic-5 as a protein that interacts with a region of the glucocorticoid receptor that includes a nuclear matrix–targeting signal and the τ2 transcriptional activation domain. In transiently transfected mammalian cells, overexpression of Hic-5 potentiated the activation of reporter genes by all steroid receptors, excluding the estrogen receptor. The activity of the estrogen receptor and the thyroid hormone receptor was stimulated by Hic-5 in the presence but not in the absence of coexpressed coactivator GRIP1. In biochemical fractionations and indirect immunofluorescence assays, a fraction of endogenous Hic-5 in REF-52 cells and transiently expressed Hic-5 in Cos-1 cells was associated with the nuclear matrix. The C-terminal region of Hic-5, which contains seven zinc fingers arranged in four LIM domains, was required for interaction with focal adhesions, the nuclear matrix, steroid receptors, and the τ2 domain of glucocorticoid receptor. The N-terminal region of Hic-5 possesses a transcriptional activation domain and was essential for the coactivator activity of Hic-5. Given the coexisting cytoplasmic and nuclear distributions of Hic-5 and its role in steroid receptor–mediated transcriptional activation, it is proposed that Hic-5 might transmit signals that emanate at cell attachment sites and regulate transcription factors, such as steroid receptors.