On coil–stretch transitions in dilute polymer solutions

Abstract
In this paper we examine molecular stretching in the inception of uniaxial elongational flow of dilute polymer solutions. The polymer molecules are modeled as bead–spring chains with finitely extensible nonlinear elastic springs, and we use the Peterlin approximation. This work is distinguished from earlier work because we model the macromolecules with chains instead of dumbbells, and we examine the time dependence of three average quantities describing the chain conformation in unsteady flows: root-mean-square end-to-end distance, root-mean-square extensions of the individual links, and mean moment of inertia about the axis of elongation. We observe a gradual transition from the coiled equilibrium state of the chain to the stretched state after the inception of strong uniaxial elongational flow, and we describe the nature of this transition which takes place in roughly four stages: I equilibrium coil; II deformed coil; III spring stretched (‘‘locally unraveled’’); and IV unfolded chain. Inclusion of hydrodynamic interaction changes the macromolecular response quantitatively but not qualitatively.