On the evolution of packets of water waves
- 15 May 1979
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 92 (4) , 691-715
- https://doi.org/10.1017/s0022112079000835
Abstract
We consider the evolution of packets of water waves that travel predominantly in one direction, but in which the wave amplitudes are modulated slowly in both horizontal directions. Two separate models are discussed, depending on whether or not the waves are long in comparison with the fluid depth. These models are two-dimensional generalizations of the Korteweg-de Vries equation (for long waves) and the cubic nonlinear Schrödinger equation (for short waves). In either case, we find that the two-dimensional evolution of the wave packets depends fundamentally on the dimensionless surface tension and fluid depth. In particular, for the long waves, one-dimensional (KdV) solitons become unstable with respect to even longer transverse perturbations when the surface-tension parameter becomes large enough, i.e. in very thin sheets of water. Two-dimensional long waves (‘lumps’) that decay algebraically in all horizontal directions and interact like solitons exist only when the one-dimensional solitons are found to be unstable.The most dramatic consequence of surface tension and depth, however, occurs for capillary-type waves in sufficiently deep water. Here a packet of waves that are everywhere small (but not infinitesimal) and modulated in both horizontal dimensions can ‘focus’ in a finite time, producing a region in which the wave amplitudes are finite. This nonlinear instability should be stronger and more apparent than the linear instabilities examined to date; it should be readily observable.Another feature of the evolution of short wave packets in two dimensions is that all one-dimensional solitons are unstable with respect to long transverse perturbations. Finally, we identify some exact similarity solutions to the evolution equations.Keywords
This publication has 26 references indexed in Scilit:
- Solitons and rational solutions of nonlinear evolution equationsJournal of Mathematical Physics, 1978
- Asymptotic Solutions of the Korteweg‐deVries EquationStudies in Applied Mathematics, 1977
- Exact Linearization of a Painlevé TranscendentPhysical Review Letters, 1977
- Nonlinear Evolution Equations—Two and Three DimensionsPhysical Review Letters, 1975
- Nonlinear deep water waves: Theory and experimentPhysics of Fluids, 1975
- A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. IFunctional Analysis and Its Applications, 1975
- The Inverse Scattering Transform‐Fourier Analysis for Nonlinear ProblemsStudies in Applied Mathematics, 1974
- Nonlinear Modulation of Gravity WavesJournal of the Physics Society Japan, 1972
- Averaged description of wave beams in linear and nonlinear media (the method of moments)Radiophysics and Quantum Electronics, 1971
- Wave InstabilitiesStudies in Applied Mathematics, 1969