Scalings of implosion experiments for high neutron yield

Abstract
A series of experiments focused on high neutron yield has been performed with the Gekko‐XII green laser system [Nucl. Fusion 2 7, 19 (1987)]. Deuterium–tritium (DT) neutron yield of 1013 and pellet gain of 0.2% have been achieved. Based on the experimental data from more than 70 irradiations, the scaling laws of the neutron yield and the related physical quantities have been studied. Comparison of the experimental neutron yield with that obtained by using a one‐dimensional fluid code has led to the conclusion that most of the neutrons produced in the stagnation phase of the computation are not observed in the experiment because of fuel–pusher mixing, possibly induced by the Rayleigh–Taylor instability. The coupling efficiency and ablation pressure have been calculated using the ion temperature measured experimentally. A coupling efficiency of 5.5% and an ablation pressure of 50 Mbar have been obtained.