Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation
- 6 June 2006
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (23) , 8786-8791
- https://doi.org/10.1073/pnas.0600250103
Abstract
The telomere and centromere are two specialized structures of eukaryotic chromosomes that are essential for chromosome stability and segregation. These structures are usually characterized by large tracts of tandemly repeated DNA. In mouse, the two structures are often located in close proximity to form telocentric chromosomes. To date, no detailed sequence information is available across the mouse telocentric regions. The antagonistic mechanisms for the stable maintenance of the mouse telocentric karyotype and the occurrence of whole-arm Robertsonian translocations remain enigmatic. We have identified large-insert fosmid clones that span the telomere and centromere of several mouse chromosome ends. Sequence analysis shows that the distance between the telomeric T2AG3 and centromeric minor satellite repeats range from 1.8 to 11 kb. The telocentric regions of different mouse chromosomes comprise a contiguous linear order of T2AG3 repeats, a highly conserved truncated long interspersed nucleotide element 1 repeat, and varying amounts of a recently discovered telocentric tandem repeat that shares considerable identity with, and is inverted relative to, the centromeric minor satellite DNA. The telocentric domain as a whole exhibits the same polarity and a high sequence identity of >99% between nonhomologous chromosomes. This organization reflects a mechanism of frequent recombinational exchange between nonhomologous chromosomes that should promote the stable evolutionary maintenance of a telocentric karyotype. It also provides a possible mechanism for occasional inverted mispairing and recombination between the oppositely oriented TLC and minor satellite repeats to result in Robertsonian translocations.Keywords
This publication has 37 references indexed in Scilit:
- Initial sequencing and comparative analysis of the mouse genomeNature, 2002
- CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNAThe Journal of cell biology, 2002
- Genomic and Genetic Definition of a Functional Human CentromereScience, 2001
- Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21Human Molecular Genetics, 1994
- Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus MusCytogenetic and Genome Research, 1993
- Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomereGenomics, 1991
- Hypervariable ultra-long telomeres in miceNature, 1990
- Mouse major (γ) satellite DNA is highly conserved and organized into extremely long tandem arrays: Implications for recombination between nonhomologous chromosomesGenomics, 1989
- Molecular drive: a cohesive mode of species evolutionNature, 1982
- Evolution of Repeated DNA Sequences by Unequal CrossoverScience, 1976