Zur Theorie der Teilchenbewegung in zeitabhängigen elektromagnetischen Feldern
- 1 January 1967
- journal article
- research article
- Published by Wiley in Contributions to Plasma Physics
- Vol. 7 (6) , 501-506
- https://doi.org/10.1002/ctpp.19670070608
Abstract
The Langevin equation – i.e. the equation of motion for a charged particle including a collision term proportional to the particle velocity – is solved for arbitrary time‐dependent electric and magnetic fields by a new general method. Instead of the usual ansatz: particle velocity = cyclotron velocity + drift velocity the method given makes the ansatz: particle velocity = tensor = cyclotron velocity. The unknown tensor obeys a simple differential equation of the first order which can be generally solved at once. This method is a modification of the variation of constants method for inhomogeneous differential equations. The electromagnetic fields considered must be spatially homogeneous; for (weakly) inhomogeneous fields an iteration procedure of Pytte (1962) may be applied. Some examples are discussed shortly. The Langevin equation treated is completely equivalent to the equation of motion in a magnetohydrodynamic one‐fluid theory.Keywords
This publication has 7 references indexed in Scilit:
- Zur allgemeinen kinetischen Theorie von partiell ionisierten Plasmen in zeitabhängigen Magnetfeldern und elektromagnetischen ZusatzfeldernContributions to Plasma Physics, 1967
- Theorie der Bewegung geladener Teilchen in richtungskonstanten zeitabhängigen Magnetfeldern und elektrischen ZusatzfeldernContributions to Plasma Physics, 1966
- On non-linear resonant light mixing in plasmasPhysics Letters, 1965
- Excitation of Plasma Waves Propagating Transverse to the Uniform External Magnetic FieldProgress of Theoretical Physics, 1965
- Erweiterte kinetische Theorie von Plasmen in rotierenden Magnetfeldern und elektromagnetischen ZusatzfeldernContributions to Plasma Physics, 1965
- Particle behaviour in independently established rotatingE- andB-fieldsJournal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, 1963
- A Note on Perturbation Theory in Nearly Periodic SystemsJournal of Mathematical Physics, 1962