Cerebro-cerebellar learning loops in apes and humans

Abstract
In the cerebro-cerebellar system of anthropoid apes and humans, the cerebellum seems able to contribute not only to motor skills but also to mental and language skills. Anatomical evidence suggests that in these species the cerebellum can function at two different hierarchical levels. At a lower level, the cerebellum can supply signals to the frontal motor areas for effecting the manipulation of muscles. At a higher level, the cerebellum can supply signals to some prefrontal areas for effecting the manipulation of symbols. At both levels, the cerebellum can function in essentially the same way: when incoming information is processed repeatedly in the neural loops in which the cerebellum is embedded, the cerebellum can learn to generate new sequences of signals, which constitute new programs for carrying out learned procedures. If cerebellar programs are used in the frontal motor areas (area 4 and are 6), motor manipulations can be effected rapidly and skillfully. Similarly, if cerebellar programs are used in some prefrontal areas (e.g., area 8 and the inferior frontal convolution), mental and language manipulations could be effected rapidly and skillfully. The cerebellum, in its contributions to these mental and language functions, as in its contributions to motor function, could serve as an adaptive mechanism whose signals enable the frontal cortex to execute learned procedures optimally. In the absence of such cerebellar signals, the frontal cortex would have to perform these procedures less rapidly and fluently. Modern testing techniques can reveal such a subtle difference in performance. These techniques are therefore now being used to test human subjects, in an attempt to validate or refute this broadened concept of cerebellar function. If the new concept is validated, it can provide powerful explanations for some unresolved mysteries about the human brain.