Peptidoglycan structure in cell walls of parental and filamentous Streptococcus cremoris HP

Abstract
Cell walls were prepared from parental and filamentous cells of Streptococcus cremoris HP. In addition to aspartic acid, glutamic acid, alanine, and lysine in a 1:2:3:1 ratio, such preparations contained hot formamide-extractable material composed of glucosamine, glucosa-mine-6-phosphate, glucose, galactose, and rhamnose. Parental and filamentous cell walls contained, respectively, 210 and 225 disaccharide units per milligram. The ratio of muramic acid: peptide subunits was about 1.3 for both preparations.Enzymic and chemical analyses revealed that glycan strands are incompletely substituted, peptide cross-bridging is not mediated by D-alanyl-L-alanyl linkages, peptide subunits are linked together to form large moieties, and no significant differences in peptidoglycan structure exist between parental and filamentous cell walls.Analysis by dinitrophenylation techniques disclosed the presence of significant quantities of glucosamine and muramic acid residues with free amino groups in the peptidoglycans of both cell wall preparations. Conversion of such groups by dinitrophenylation or N-acetylation greatly enhanced the response of cell walls to lysozyme digestion.