Rapid sample throughput for biomedical stable isotope tracer studies
- 1 October 1988
- journal article
- research article
- Published by Wiley in Journal of Mass Spectrometry
- Vol. 16 (1-12) , 229-235
- https://doi.org/10.1002/bms.1200160142
Abstract
Typical 13C or 15N tracer studies generate large numbers of samples. Instrumentation capable of rapid automated analysis is therefore of importance as a practical alternative to conventional isotope methodology. Although biomedical sample nature is diverse, experimenters often require analysis of substrates and products of particular biochemical pathways. Clearly, reaction products can contain considerably less isotope tracer than precurosors. Analytical techniques thus need to accommodate samples of widely varying nature, size and isotope enrichment. In the clinical field, where stable isotopes are increasingly used to study protein, carbohydrate and fat metabolism, analysis of the isotope ratio of a substrate infused into the plasma and a product of its metabolism is often required. Conventional analytical approaches demand access to two mass spectrometers: isotope ratio mass spectrometry (IRMS) for isotope analysis of the relatively large concentrations of low-enrichment metabolic product, and gas chromatography/mass spectrometry (GC/MS) for analysis of the infused substrate often present at high enrichment but low concentration. The recent development of continuous-flow IRMS (CF-IRMS) combined with preparative chromatography offers a practical alternative to the conventional approaches that is rapid and automatic. In addition to providing a considerably less complex and costly alternative to conventional instrumentation, a single CF-IRMS instrument can also analyse small quantities of low-enrichment metabolites with superior performance than either of the alternative approaches. CF-IRMS is illustrated using results from constant-infusion studies in human protein and fat metabolism which require measurement of the isotope enrichment in submicromolar quantities of plasma substrates together with analysis of larger quantities of their oxidation products, urinary nitrogen and breath CO2.Keywords
This publication has 6 references indexed in Scilit:
- Preliminary13C measurements using a gas chromatograph interfaced to an isotope ratio mass spectrometerJournal of Mass Spectrometry, 1985
- Gas chromatography—stable isotope ratio analysis at natural abundance levelsJournal of Mass Spectrometry, 1984
- Measurement of α-keto acids in plasma using an amino acid analyzerAnalytical Biochemistry, 1984
- Interfacing an automatic elemental analyser with an isotope ratio mass sepectrometer: the potential for fully automated total nitrogen and nitrogen-15 analysisThe Analyst, 1983
- A resin-based method for the preparation of molecular nitrogen for 15N analysis from urinary and plasma componentsAnalytical Biochemistry, 1982
- A method for continuous measurement of gas exchange and expired radioactivity in acutely III patientsMetabolism, 1964