Rain Estimation from Geosynchronous Satellite Imagery—Visible and Infrared Studies

Abstract
A diagnostic method to estimate rainfall over large space and time scales by the use of geosynchronous visible or infrared satellite imagery has been derived and tested. Based on the finding that arms of active convection and rainfall in the tropics are brighter or colder on the satellite visible or infrared photographs than inactive regions, ATS-3 and SMS/GOES images were calibrated with gage-adjusted 10 cm radar data over south Florida. The resulting empirical relationships require a time sequence of cloud area, measured from the satellite images at a specified threshold brightness or temperature to calculate rain volume over a given period. Satellite rain estimates were made for two areas in south Florida that differ in size by an order of magnitude (1.3×104km2 vs 1.1×105km2) and verified by a combined system of gages and radar. Contrary to our expectations, the rain estimates for the smaller area agreed better with the raingage-radar groundtruth than the satellite rain estimates for the large... Abstract A diagnostic method to estimate rainfall over large space and time scales by the use of geosynchronous visible or infrared satellite imagery has been derived and tested. Based on the finding that arms of active convection and rainfall in the tropics are brighter or colder on the satellite visible or infrared photographs than inactive regions, ATS-3 and SMS/GOES images were calibrated with gage-adjusted 10 cm radar data over south Florida. The resulting empirical relationships require a time sequence of cloud area, measured from the satellite images at a specified threshold brightness or temperature to calculate rain volume over a given period. Satellite rain estimates were made for two areas in south Florida that differ in size by an order of magnitude (1.3×104km2 vs 1.1×105km2) and verified by a combined system of gages and radar. Contrary to our expectations, the rain estimates for the smaller area agreed better with the raingage-radar groundtruth than the satellite rain estimates for the large...

This publication has 0 references indexed in Scilit: