Fluorescence-detected polymerization kinetics of human α1-antitrypsin

Abstract
The time dependence of the humanα 1-antitrypsin polymerization process was studied by means of the intrinsic fluorescence stopped-flow technique as well as the fluorescence-quenching-resolved spectra (FQRS) method and native PAGE. The polymerization was induced by mild denaturing conditions (1 M GuHCl) and temperature. The data show that the dimer formation reaction under mild conditions was followed by an increase of fluorescence intensity. This phenomenon is highly temperature sensitive. The structure ofα 1-antitrypsin dimer resembles the conformation of antithrombin III dimer. In the presence of the denaturant the polymerization process is mainly limited to the dimer state. Theα 1-antitrypsin activity measurements confirm monomer-to-dimer transition under these conditions. These results are in contrast to the polymerization process induced by temperature, where the dimer state is an intermediate step leading to long-chain polymers. On the basis of stopped-flow and electrophoretic data it is suggested that both C-sheet as well as A-sheet mechanisms contribute to the polymerization process under mild conditions.