Age-Related Changes in Estrogen Receptor β in Rat Hypothalamus: A Quantitative Analysis

Abstract
Although the estrogen receptor beta (ER beta) is a major target for actions of estrogen on the brain, little is known about its neural expression during aging, when levels and the mode of estrogen release undergo substantial changes. Therefore, in the present study we examined effects of aging and estrogen treatment on the number of cells expressing the ER beta in female rats. Two regions relevant to reproductive function were analyzed: the anteroventral periventricular nucleus (AVPV) and the principal nucleus of the bed nucleus of the stria terminalis (pBST). The numbers of ER beta-expressing cells were quantified using an unbiased stereological approach. Female rats were used at three ages [young (3-4 months), middle-aged (10-12 months), and old (24-26 months)], with or without estrogen replacement. Because the estrogen milieu impacts the function of neurotransmitter receptors such as the N-methyl-D-aspartate receptor in the brain, we also investigated the colocalization of ER beta and the obligatory N-methyl-D-aspartate receptor subunit, NR1. We observed a significant age-related decrease in ER beta cell number in the AVPV, but not the pBST. No significant effect of estrogen on ER beta cell number was detected in either brain region at any age. Approximately 10% and 3% of cells expressing ER beta also coexpressed NR1 in AVPV and pBST, respectively, and this did not differ with age or treatment. Taken together, our results demonstrate 1) there are age-related changes in ER beta cell number that are region specific; 2) this expression is not altered by estrogen replacement; and 3) a subset of ER beta-positive cells coexpresses NR1.

This publication has 49 references indexed in Scilit: