A Novel Methodology for the Synthesis of Cyclic Carbonates Based on the Palladium-Catalyzed Cascade Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ols with Phenols, Involving a Novel Carbon Dioxide Elimination-Fixation Process

Abstract
A palladium-catalyzed CO(2)-recycling reaction has been developed. Reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols, carried out in the presence of a palladium catalyst, produces phenoxy-substituted cyclic carbonates by way of a pathway involving a CO(2) elimination-fixation. A variety of propargylic alcohols and phenols participate in these reactions which yield cyclic carbonates with high efficiencies. Stereoselective construction of trans-cyclic carbonates is achieved by using nonsymmetric substrates. Highly enantioselective reactions occur when (S)-BINAP is used as a ligand. Reaction of 4-phenoxycarbonyloxy-2-butyn-1-ol in the presence of the palladium catalyst yields the corresponding cyclic carbonates via a three-component decomposition-reconstruction process.