Physical Characterization Of Porous Materials And Correlation With The Activity Of Immobilized Enzyme In Organic Medium

Abstract
A series of commonly used porous supports was characterized by determination of particle size distribution, porosity, surface area (total and distributions with pore diameters) and skeletal density. The performance of immobilized α-chymotrypsin catalyzed dipeptide synthesis in an acetonitrile medium was correlated with these physical properties. At high enzyme loading, when internal mass transfer limitations are expected to occur, the activity can be correlated with the support characteristic parameter. This is a combination of physical properties such as particle size, porosity, and volumetric porosity, which influence the substrate diffusion rate. At low enzyme loading the important parameter is the accessible surface area, which will determine how the enzyme is distributed in the pores of the support. When assessing the effect of the support material on enzymatic activity, the geometric considerations studied here should always be contemplated before making any assumptions about direct effects of support material on enzymatic catalytic properties.