Abstract
The structural requirements for the inhibition of protein synthesis in mitochondria and in bacterial extracts by chloramphenicol isomers and analogues are similar. D-threo-Chloramphenicol and its p-methylthio, p-methylsulfonyl, and p-sulfamoyl analogues equally inhibit protein synthesis in isolated rat-liver mitochondria and extracts of Escherichia coli B. Fifty percent inhibition is at 15 μM and 10 μM, respectively. Analogues with larger p-substituents on the phenyl ring or with an m-chloro group are less inhibitory in both systems. L-threo-Chloramphenicol and deacylated chloramphenicol do not inhibit mitochondrial protein synthesis; with a dichloroacetyl group replacing the acetyl group on chloramphenicol 50% inhibition is at 65 μM, and L-erythro-chloramphenicol is 2% as inhibitory as D-threo-chloramphenicol. The inhibition of protein synthesis in intact E. coli B is in the order: chloramphenicol > p-methylthio > p-methylsulfonyl > p-sulfamoyl, 50% inhibition being at 4 μM for chloramphenicol.

This publication has 0 references indexed in Scilit: