Global Approximation of Perturbed Hamiltonian Differential Equations with Several Turning Points
- 1 September 1987
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 18 (5) , 1275-1293
- https://doi.org/10.1137/0518093
Abstract
No abstract availableThis publication has 14 references indexed in Scilit:
- Global Simplification of a Singularly Perturbed Almost Diagonal SystemSIAM Journal on Mathematical Analysis, 1986
- An Asymptotic Decomposition Method Applied to Multi-Turning Point ProblemsSIAM Journal on Mathematical Analysis, 1985
- On Continuous Triangularization of Matrix FunctionsSIAM Journal on Mathematical Analysis, 1979
- A unified theory of asymptotic integrationJournal of Mathematical Analysis and Applications, 1977
- Adiabatic invariants for linear Hamiltonian systemsJournal of Differential Equations, 1975
- An historical survey of ordinary linear differential equations with a large parameter and turning pointsArchive for History of Exact Sciences, 1971
- On the Adiabatic Theorem of Quantum MechanicsJournal of the Physics Society Japan, 1950
- The asymptotic nature of solutions of linear systems of differential equationsDuke Mathematical Journal, 1948
- Störungstheorie der SpektralzerlegungMathematische Annalen, 1937
- Beweis des AdiabatensatzesThe European Physical Journal A, 1928