Cytochrome c at charged interfaces. 2. Complexes with negatively charged macromolecular systems studied by resonance Raman spectroscopy

Abstract
We have analyzed the structure of cytochrome c (cyt c) bound in a variety of complexes in which negatively charged molecular groups interact with the positively charged binding domain around the heme crevice of cyt c. Using resonance Raman spectroscopy, we could demonstrate that these interactions induce the same conformational changes as they were observed in the surface-enhanced resonance Raman experiments of cyt c adsorbed on the Ag electrode [Hildebrandt and Stockburger (1989) Biochemistry (preceeding paper in this issue)]. When cyt c is bound as (As4W40O140)27-, state II is stabilized, whereas in complexes with phosvitin and cytochrome b5 state I is formed. The complexes with phospholipid vesicles and inverted micelles reveal a mixture of both states. It is suggested that these systems as well as cyt c adsorbed on the Ag electrode may be regarded as model systems for the physiological complexes of cyt c with cytochrome oxidase and cytochrome reductase. On the basis of our findings it is proposed that the biological electron-transfer reactions are controlled by electric field induced conformational transitions of cyt c upon complex formation with it physiological redox partners.
Keywords

This publication has 16 references indexed in Scilit: