Quantum geometry of topological gravity
Preprint
- 28 November 1996
Abstract
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the fractal dimension d_H = 3.58 +/- 0.04. This result lends support to the conjecture d_H = -2\alpha_1/\alpha_{-1}, where \alpha_{-n} is the gravitational dressing exponent of a spin-less primary field of conformal weight (n+1,n+1), and it disfavors the alternative prediction d_H = -2/\gamma_{str}. On the other hand, we find dim[l] = dim[r^2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension d_s = 1.980 +/- 0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c=-2.Keywords
All Related Versions
- Version 1, 1996-11-28, ArXiv
- Published version: Physics Letters B, 397 (3-4), 177.
This publication has 0 references indexed in Scilit: