Abstract
The most general case of plane wave propagation, when normal and shear stresses occur simultaneously, is considered in a material obeying the von Mises yield condition. The resulting nonlinear differential equations have not been solved previously for any boundary-value problem, except for special situations where the differential equations degenerate into linear ones. In the present paper, the stresses in a half-space, due to a uniformly distributed step load of pressure and shear on the surface, are obtained in closed form.

This publication has 0 references indexed in Scilit: