Vaccinia Virus DNA Ligase Recruits Cellular Topoisomerase II to Sites of Viral Replication and Assembly
- 15 June 2008
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 82 (12) , 5922-5932
- https://doi.org/10.1128/jvi.02723-07
Abstract
Vaccinia virus replication is inhibited by etoposide and mitoxantrone even though poxviruses do not encode the type II topoisomerases that are the specific targets of these drugs. Furthermore, one can isolate drug-resistant virus carrying mutations in the viral DNA ligase and yet the ligase is not known to exhibit sensitivity to these drugs. A yeast two-hybrid screen was used to search for proteins binding to vaccinia ligase, and one of the nine proteins identified comprised a portion (residue 901 to end) of human topoisomerase IIbeta. One can prevent the interaction by introducing a C(11)-to-Y substitution mutation into the N terminus of the ligase bait protein, which is one of the mutations conferring etoposide and mitoxantrone resistance. Coimmunoprecipitation methods showed that the native ligase and a Flag-tagged recombinant protein form complexes with human topoisomerase IIalpha/beta in infected cells and that this interaction can also be disrupted by mutations in the A50R (ligase) gene. Immunofluorescence microscopy showed that both topoisomerase IIalpha and IIbeta antigens are recruited to cytoplasmic sites of virus replication and that less topoisomerase was recruited to these sites in cells infected with mutant virus than in cells infected with wild-type virus. Immunoelectron microscopy confirmed the presence of topoisomerases IIalpha/beta in virosomes, but the enzyme could not be detected in mature virus particles. We propose that the genetics of etoposide and mitoxantrone resistance can be explained by vaccinia ligase binding to cellular topoisomerase II and recruiting this nuclear enzyme to sites of virus biogenesis. Although other nuclear DNA binding proteins have been detected in virosomes, this appears to be the first demonstration of an enzyme being selectively recruited to sites of poxvirus DNA synthesis and assembly.Keywords
This publication has 46 references indexed in Scilit:
- Identification of Novel Antipoxviral Agents: Mitoxantrone Inhibits Vaccinia Virus Replication by Blocking Virion AssemblyJournal of Virology, 2007
- DNA Branch Nuclease Activity of Vaccinia A22 ResolvaseJournal of Biological Chemistry, 2007
- Topoisomerase II binds importin α isoforms and exportin/CRM1 but does not shuttle between the nucleus and cytoplasm in proliferating cellsExperimental Cell Research, 2006
- A Poxvirus Host Range Protein, CP77, Binds to a Cellular Protein, HMG20A, and Regulates Its Dissociation from the Vaccinia Virus Genome in CHO-K1 CellsJournal of Virology, 2006
- Involvement of Topoisomerase III in Telomere-Telomere RecombinationJournal of Biological Chemistry, 2006
- The Vaccinia Virus I3L Gene Product Is Localized to a Complex Endoplasmic Reticulum-Associated Structure That Contains the Viral Parental DNAJournal of Virology, 2003
- Shope fibroma virus DNA topoisomerase catalyses holliday junction resolution and hairpin formation in Vitro 1 1Edited by J. KarnJournal of Molecular Biology, 1999
- Vaccinia virus DNA ligase: specificity, fidelity, and inhibitionBiochemistry, 1995
- Replication of vaccinia virus DNA in enucleated L-cellsJournal of Molecular Biology, 1971
- THE DEVELOPMENT OF VACCINIA VIRUS IN EARLE'S L STRAIN CELLS AS EXAMINED BY ELECTRON MICROSCOPYThe Journal of cell biology, 1961